Version 1

Problem 1 Consider the following system :

$$
\left\{\begin{aligned}
x+y-z & =k \\
2 x+3 y+k z & =3 k \\
x+k y+3 z & =2 k
\end{aligned}\right.
$$

$$
\left[\begin{array}{ccc:c}
1 & 1 & -1 & k \\
2 & 3 & k & 3 k \\
1 & k & 3 & 2 k
\end{array}\right] \begin{array}{cccc}
r_{2}-2 r_{1} \rightarrow r r_{2} \\
r_{3}-r_{1} \rightarrow 7
\end{array}\left[\begin{array}{cccc}
1 & 1 & -1 & k \\
0 & 1 & k+2 & k \\
0 & k-1 & 4 & k
\end{array}\right] r_{3}-(k-1) r_{2} \rightarrow r_{3}
$$

$$
\left[\begin{array}{lll}
1 & 1 & -1 \\
0 & 1 & k+2 \\
0 & 0 & 4-(k-1)(k+2) \\
k & k-(k-1) k
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & -1 & k \\
0 & 1 & k+2 & k \\
0 & 0 & (k-2)(k+3) & k(k-2)
\end{array}\right]=A_{E}
$$

1. For which values of k does the system have no solutions?

$$
k=-3 \quad \text { (last row of } A_{E} \text { is a "bad row") }
$$

2. For which values of k does the system have exactly one solution?

$$
\begin{gathered}
k \neq 2,-3 \quad \begin{array}{c}
\text { (First } 3 \text { columns of } A E \text { here } \\
\text { pivots i.e no free veriebles) } \\
\\
\\
\text { no bad rows }
\end{array}
\end{gathered}
$$

3. For which values of k does the system have infinitely many solutions ?

$$
\begin{aligned}
k=2 \quad \text { (Lest row of } \lambda E \text { is } 0000 \\
\text { ard column hes no pivot. } \\
\text { there ere free veriebles end } \\
\text { no bed rows) }
\end{aligned}
$$

Problem 2 Let A be the 4×4 matrix with columns $c_{1}, c_{2}, c_{3}, c_{4}$. The matrix $B=\left(\begin{array}{ccccc}\mid & \mid & \mid & \mid & a \\ \mid & \mid & \mid & \mid & b \\ c_{1} & c_{2} & c_{3} & c_{4} & c \\ \mid & \mid & \mid & \mid & d\end{array}\right)$ (that is B is the 4×5 matrix that consists of A plus an additional fifth column $\left(\begin{array}{l}a \\ b \\ c \\ d\end{array}\right)$)
reduces to $\left(\begin{array}{ccccc}1 & 1 & -1 & 2 & a \\ 0 & 1 & -3 & -2 & b-a \\ 0 & 0 & \mathbf{1} & 2 & c-b+a \\ 0 & 0 & 0 & 0 & d-a+2 b\end{array}\right)$

1. Are c_{1}, c_{2}, c_{3}, and c_{4} linearly independent? Justify your answer.
C is reduced to echelon form and only has 3 pivots, there is no pivot in
column 4 so no $c_{1} c_{2} c_{3} c_{4}$ are not linearly independent
2. Are c_{1}, c_{2}, c_{4} linearly independent? Justify your answer.

$$
\begin{aligned}
& \text { yes Pooking at }\left(\begin{array}{ccc}
1 & 1 & 2 \\
0 & 1 & -2 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right) \text { there is a } \\
& \text { pivot in every column so } c_{1} c_{2} c_{4} \text { ere independent. }
\end{aligned}
$$

3. Give an example of a vector $b \in R^{4}$ that it is not in $\operatorname{span}\left(c_{1}, c_{2}, c_{3}, c_{4}\right)$, or explain why this is not possible. If you give an example, you need to justify why your example works.

$$
\begin{aligned}
& \text { we went a vector }\left(\begin{array}{l}
e \\
b \\
c \\
d
\end{array}\right) \text { with } d-a+2 b=0 \\
& \text { For example } b=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \text { would work. }
\end{aligned}
$$

Problem 3 This problem has three unrelated parts.

1. Give an example of a linear system with two equations and three variables that has no solutions, or explain why this is not possible.

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1}+x_{2}+x_{3}=2
\end{aligned}
$$

2. Give an example of a $3 x 3$ matrix A that has linearly independent columns and can be reduced (by performing a sequence of elementary operations) to a matrix B that has linearly dependent columns, or explain why this is not possible.

Since the columns of A are linearly independent $A x=0$ has only the solution $x=\overrightarrow{0}$, so $B x=0$ also has only the solution $x=0^{0}$, because performing elementary operations transforms a system into a different system with the same solutions. Since $B X=i \overrightarrow{0}$ only hes the trivial solution, the columns of B ore also independent. impossible
3. Give an example of three non zero vectors u_{1}, u_{2}, u_{3} in R^{3} that are linearly dependent, but u_{1} is not in span $\left(u_{2}, u_{3}\right)$, or explain why this is not possible.

$$
\text { [a] [ali] }]
$$

